第一av在线_日韩成人久久久_亚洲人成电影网站色_精品精品导航_亚洲综合中文_精品国产91久久久久久_可以在线观看的黄色_99热这里有精品

您當前的位置 :環球傳媒網>資訊 > 正文
New Algorithm Closes Quantum Supremacy Window新算法關閉了量子霸權窗口
2023-04-28 13:10:52 來源:嗶哩嗶哩 編輯:

UP:用ChatGPT翻譯

Random circuit sampling, a popular technique for showing the power of quantum computers, doesn’t scale up if errors go unchecked.

隨機電路采樣是展示量子計算機能力的一種流行技術,但如果錯誤未得到檢查,它將無法擴展。


(相關資料圖)

In random circuit sampling, researchers take quantum bits and randomly manipulate them. A new paper explores how errors in quantum computers can multiply to thwart these efforts.

在隨機電路采樣中,研究人員對量子比特進行隨機操作。一篇新論文探討了量子計算機中的錯誤如何會相互作用,從而阻礙這些嘗試。

In what specific cases do quantum computers surpass their classical counterparts? That’s a hard question to answer, in part because today’s quantum computers are finicky things, plagued with errors that can pile up and spoil their calculations.

量子計算機在哪些具體情況下能夠超越經典計算機?這是一個很難回答的問題,部分原因在于如今的量子計算機是非常棘手的東西,會遭受錯誤的困擾,這些錯誤會不斷累積并破壞它們的計算。

By one measure, of course, they’ve already done it. In 2019, physicists at Google announced that they used a 53-qubit machine to achieve quantum supremacy, a symbolic milestone marking the point at which a quantum computer does something beyond the reach of any practical classical algorithm. Similar demonstrations by physicists at the University of Science and Technology of China soon followed.

從某個角度來看,他們已經做到了。2019年,谷歌的物理學家宣布他們使用一臺53量子比特的機器實現了量子霸權,這是一個象征性的里程碑,標志著量子計算機做到了超越任何實用經典算法的事情。隨后,中國科學技術大學的物理學家也進行了類似的演示。

But rather than focus on an experimental result for one particular machine, computer scientists want to know whether classical algorithms will be able to keep up as quantum computers get bigger and bigger. “The hope is that eventually the quantum side just completely pulls away until there’s no competition anymore,” said Scott Aaronson, a computer scientist at the University of Texas, Austin.

但計算機科學家關注的不是單個機器的實驗結果,而是想知道隨著量子計算機越來越大,經典算法是否能夠跟得上。“希望是,最終量子計算機的優勢會變得越來越明顯,直到沒有競爭對手了,”得克薩斯大學奧斯汀分校的計算機科學家斯科特·亞倫森(Scott Aaronson)說道。

That general question is still hard to answer, again in part because of those pesky errors. (Future quantum machines will compensate for their imperfections using a technique called quantum error correction, but that capability is still a ways off.) Is it possible to get the hoped-for runaway quantum advantage even with uncorrected errors?

這個一般性問題仍然很難回答,部分原因在于那些討厭的錯誤。(未來的量子計算機將使用一種稱為量子糾錯的技術來補償它們的不完美之處,但這種能力還有一段路要走。)即使沒有進行糾錯,是否仍有可能獲得期望的瘋狂的量子優勢呢?

Most researchers suspected the answer was no, but they couldn’t prove it for all cases. Now, in a paper posted to the preprint server arxiv.org, a team of computer scientists has taken a major step toward a comprehensive proof that error correction is necessary for a lasting quantum advantage in random circuit sampling — the bespoke problem that Google used to show quantum supremacy. They did so by developing a classical algorithm that can simulate random circuit sampling experiments when errors are present.

大多數研究人員認為答案是否定的,但他們無法證明對于所有情況都是這樣。現在,在一篇發布在預印本服務器arxiv.org上的論文中,一組計算機科學家朝著全面證明量子糾錯對于在隨機電路采樣中獲得持久的量子優勢是必要的邁出了重要的一步。隨機電路采樣是谷歌用來展示量子霸權的特定問題。他們通過開發一種經典算法,在存在錯誤的情況下可以模擬隨機電路采樣實驗來實現這一點。

“It’s a beautiful theoretical result,” Aaronson said, while stressing that the new algorithm is not practically useful for simulating real experiments like Google’s.

“這是一個美妙的理論結果,”亞倫森說道,同時強調新算法不適用于模擬像谷歌這樣的真實實驗。

In random circuit sampling experiments, researchers start with an array of qubits, or quantum bits. They then randomly manipulate these qubits with operations called quantum gates. Some gates cause pairs of qubits to become entangled, meaning they share a quantum state and can’t be described separately. Repeated layers of gates bring the qubits into a more complicated entangled state.

在隨機電路采樣實驗中,研究人員從一組量子比特開始。然后,他們使用稱為量子門的操作隨機操作這些量子比特。有些門會導致一對量子比特糾纏,這意味著它們共享一個量子態,并且不能單獨描述。門的重復層使量子比特帶入更復雜的糾纏態中。

To learn about that quantum state, researchers then measure all the qubits in the array. This causes their collective quantum state to collapse to a random string of ordinary bits — 0s and 1s. The number of possible outcomes grows rapidly with the number of qubits in the array: With 53 qubits, as in Google’s experiment, it’s nearly 10 quadrillion. And not all strings are equally likely. Sampling from a random circuit means repeating such measurements many times to build up a picture of the probability distribution underlying the outcomes.

為了了解這種量子態,研究人員然后測量數組中的所有量子比特。這將導致它們的集體量子態崩塌為一個普通比特的隨機字符串——0和1。可能的結果數量隨著數組中量子比特數量的增加而迅速增長:對于谷歌實驗的53個量子比特,近似達到了10的15次方。并且,并不是所有的字符串出現的概率都是相等的。從一個隨機電路中進行采樣意味著多次重復這樣的測量,以建立結果概率分布的圖像。

The question of quantum advantage is simply this: Is it hard to mimic that probability distribution with a classical algorithm that doesn’t use any entanglement?

量子優勢的問題很簡單:使用不使用任何糾纏的經典算法模仿該概率分布是否很困難?

In 2019, researchers proved that the answer is yes for error-free quantum circuits: It is indeed hard to classically simulate a random circuit sampling experiment when there are no errors. The researchers worked within the framework of computational complexity theory, which classifies the relative difficulty of different problems. In this field, researchers don’t treat the number of qubits as a fixed number such as 53. “Think of it as n, which is some number that’s going to increase,” said Aram Harrow, a physicist at the Massachusetts Institute of Technology. “Then you want to ask: Are we doing things where the effort is exponential in n or polynomial in n?” This is the preferred way to classify an algorithm’s runtime — when n grows large enough, an algorithm that’s exponential in n lags far behind any algorithm that’s polynomial in n. When theorists speak of a problem that’s hard for classical computers but easy for quantum computers, they’re referring to this distinction: The best classical algorithm takes exponential time, while a quantum computer can solve the problem in polynomial time.

2019年,研究人員證明,對于沒有錯誤的量子電路,答案是肯定的:當沒有錯誤時,經典模擬隨機電路采樣實驗確實很困難。這些研究人員在計算復雜性理論框架內工作,該理論對不同問題的相對難度進行分類。在這個領域,研究人員不將量子比特的數量視為一個固定的數字,例如53。麻省理工學院的物理學家Aram Harrow說:“把它看作是n,n是一個將要增加的數字。”“然后你想問:我們是否在做的事情中,所需的工作量是n的指數或n的多項式?”這是分類算法運行時間的首選方法 - 當n足夠大時,指數級別的算法遠遠落后于多項式級別的算法。當理論家談論對經典計算機而言很難但對量子計算機很容易的問題時,他們指的是這個區別:最好的經典算法需要指數時間,而量子計算機可以在多項式時間內解決該問題。

Yet that 2019 paper ignored the effects of errors caused by imperfect gates. This left open the case of a quantum advantage for random circuit sampling without error correction.

然而,這篇2019年的論文忽略了由不完美的門引起的誤差的影響。這留下了在沒有糾錯的情況下,隨機電路采樣的量子優勢的可能性。

If you imagine continually increasing the number of qubits as complexity theorists do, and you also want to account for errors, you need to decide whether you’re also going to keep adding more layers of gates — increasing the circuit depth, as researchers say. Suppose you keep the circuit depth constant at, say, a relatively shallow three layers, as you increase the number of qubits. You won’t get much entanglement, and the output will still be amenable to classical simulation. On the other hand, if you increase the circuit depth to keep up with the growing number of qubits, the cumulative effects of gate errors will wash out the entanglement, and the output will again become easy to simulate classically.

如果你像復雜性理論學者那樣想象不斷增加量子比特的數量,并且還想考慮誤差的影響,你需要決定是否繼續添加更多的量子門層——增加電路深度,正如研究人員所說的那樣。假設你保持電路深度恒定,比如相對較淺的三層,當你增加量子比特的數量時,你不會得到太多的糾纏,輸出仍然可以被經典模擬。另一方面,如果你增加電路深度來跟上不斷增長的量子比特數量,量子門誤差的累積效應將會沖淡糾纏,輸出將再次變得容易被經典模擬。

But in between lies a Goldilocks zone. Before the new paper, it was still a possibility that quantum advantage could survive here, even as the number of qubits increased. In this intermediate-depth case, you increase the circuit depth extremely slowly as the number of qubits grows: Even though the output will steadily get degraded by errors, it might still be hard to simulate classically at each step.

但是在中間存在一個適當的深度區間。在這篇新論文之前,即使在量子比特數量增加時,量子優勢在這里仍然有可能存在。在這種中間深度的情況下,您需要極慢地增加電路深度,以便隨著量子比特數量的增長。即使輸出結果不斷受到錯誤的影響,但在每一步中仍然很難在經典計算機上模擬。

The new paper closes this loophole. The authors derived a classical algorithm for simulating random circuit sampling and proved that its runtime is a polynomial function of the time required to run the corresponding quantum experiment. The result forges a tight theoretical connection between the speed of classical and quantum approaches to random circuit sampling.

新論文填補了這一漏洞。作者們推導出了一個經典算法,用于模擬隨機電路采樣,并證明其運行時間是運行相應量子實驗所需時間的一個多項式函數。這個結果建立了經典和量子方法在隨機電路采樣上速度之間的緊密理論聯系。

The new algorithm works for a major class of intermediate-depth circuits, but its underlying assumptions break down for certain shallower ones, leaving a small gap where efficient classical simulation methods are unknown. But few researchers are holding out hope that random circuit sampling will prove hard to simulate classically in this remaining slim window. “I give it pretty small odds,” said Bill Fefferman, a computer scientist at the University of Chicago and one of the authors of the 2019 theory paper.

新算法適用于一類重要的中等深度電路,但其基本假設對某些更淺的電路不成立,留下了一個小的空缺,其中有效的經典模擬方法是未知的。但是很少有研究人員抱有希望,認為隨機電路采樣在這個狹窄的窗口內會被證明難以在經典計算機上模擬。 "我覺得它的機會相當小," Bill Fefferman說,他是芝加哥大學的計算機科學家,也是2019年理論論文的作者之一。

The result suggests that random circuit sampling won’t yield a quantum advantage by the rigorous standards of computational complexity theory. At the same time, it illustrates the fact that polynomial algorithms, which complexity theorists indiscriminately call efficient, aren’t necessarily fast in practice. The new classical algorithm gets progressively slower as the error rate decreases, and at the low error rates achieved in quantum supremacy experiments, it’s far too slow to be practical. With no errors it breaks down altogether, so this result doesn’t contradict anything researchers knew about how hard it is to classically simulate random circuit sampling in the ideal, error-free case. Sergio Boixo, the physicist leading Google’s quantum supremacy research, says he regards the paper “more as a nice confirmation of random circuit sampling than anything else.”

結果表明,按照計算復雜性理論的嚴格標準,隨機電路采樣不會產生量子優勢。與此同時,它說明了復雜性理論家不加區分地稱之為高效的多項式算法并不一定在實踐中快速。新的經典算法隨著誤差率的降低而變得越來越慢,在量子霸權實驗中實現的低誤差率下,它太慢了,不切實際。在沒有誤差的情況下,它完全崩潰,因此這個結果并不違背研究人員關于理想情況下難以經典模擬隨機電路采樣的已知結論。谷歌量子霸權研究的物理學家Sergio Boixo表示,他認為這篇論文“更像是對隨機電路采樣的一個好的證實,而不是其他什么東西”。

On one point, all researchers agree: The new algorithm underscores how crucial quantum error correction will be to the long-term success of quantum computing. “That’s the solution, at the end of the day,” Fefferman said.

所有的研究人員都同意一個觀點:新算法強調了量子糾錯對于量子計算長期成功的關鍵性。Fefferman說,“這是最終的解決方案。”

關鍵詞:

相關閱讀
分享到:
版權和免責申明

凡注有"環球傳媒網"或電頭為"環球傳媒網"的稿件,均為環球傳媒網獨家版權所有,未經許可不得轉載或鏡像;授權轉載必須注明來源為"環球傳媒網",并保留"環球傳媒網"的電頭。

Copyright ? 1999-2017 cqtimes.cn All Rights Reserved 環球傳媒網-重新發現生活版權所有 聯系郵箱:8553 591@qq.com
久久理论电影网| 久久成人免费网站| 久久99精品久久久久久动态图| 丁香天五香天堂综合| 一区二区三区四区蜜桃| 精品视频—区二区三区免费| 日本中文字幕中出在线| 香蕉久久精品日日躁夜夜躁| 国产一区二区三区的电影| 国产精品自在欧美一区| 天天综合天天综合色| 欧美艳星kaydenkross| 日韩成人一级大片| 亚洲一区二区三区精品在线| 天堂在线视频中文网| 国产视频综合在线| 视频在线观看入口黄最新永久免费国产| 天堂一区二区在线| 日韩av视屏| 性感美女一区二区在线观看| 久久久久久一区二区| 欧美日韩在线不卡| 在线观看成人免费视频| 欧美野外wwwxxx| 欧美国产视频在线| 亚洲激情久久久| 涩涩视频在线观看免费| 精品免费在线| 亚洲精品高清视频在线观看| gogogo高清在线观看免费完整版| 综合久久精品| 精品视频在线免费观看| 神马电影网我不卡| 99久久综合狠狠综合久久| 中文字幕在线观看| 欧美精品色网| 日韩一二三区不卡| 久久久久高潮毛片免费全部播放| 久久久久久电影| 91伦理视频在线观看| 亚洲国产日韩在线| 精品国产一区二区三区不卡| 国语一区二区三区| 亚洲成a人在线观看| 中文字幕成在线观看| av男人天堂一区| 国产日产精品久久久久久婷婷| 亚洲巨乳在线| 亚洲精品国产精品久久清纯直播 | 青青国产在线| 欧美日韩国产在线观看网站| 日韩制服丝袜先锋影音| 亚洲久久久久久久久久久| 视频福利一区| 亚洲制服欧美中文字幕中文字幕| 超碰在线资源| 国产成人在线视频网站| 欧美偷拍视频| 蜜乳av一区二区| 亚洲人成伊人成综合网久久久| 99精品电影| 亚洲成人精品一区| 性欧美xxx69hd高清| 综合久久久久久| 污片视频在线免费观看| 国产99精品国产| yw在线观看| 国模少妇一区二区三区 | 亚洲精品影视| 亚洲深夜福利网站| 一区三区视频| 色偷偷免费视频| 在线亚洲自拍| 中文字幕不卡| 国产一区二区三区在线观看精品| 黄色片在线免费看| 国产不卡视频在线播放| 蜜芽在线免费观看| 久久女同性恋中文字幕| 成人观看网址| 一区二区三区精品久久久| 性爽视频在线| 亚洲午夜av在线| 日韩成人精品| 欧美巨大另类极品videosbest| 欧美日本高清| 26uuu精品一区二区三区四区在线| av在线免费观看网| 国产农村妇女精品一二区| 日韩电影免费观看中文字幕| 风间由美一区二区av101| 色欧美片视频在线观看在线视频| 国精产品一区一区三区四川| 久久众筹精品私拍模特| 91在线网址| 国产福利一区在线| 欧美videos极品另类| 久久综合色综合88| 黄色网址在线免费| 91亚洲精华国产精华精华液| 国产精品久久一区二区三区不卡| 紧缚奴在线一区二区三区| 国产天堂在线| 国产91对白在线观看九色| 成年人视频在线看| 国产老妇另类xxxxx| 在线麻豆国产传媒1国产免费| 精品在线手机视频| 精品国产电影一区| 夜夜躁狠狠躁日日躁2021日韩| 欧美性xxxxx| 黄色美女久久久| 欧美精品一区二区三区视频 | 美女亚洲一区| 日韩精品专区在线影院观看| 日韩欧美电影| 欧美日韩免费在线视频| 久久人体av| 亚洲柠檬福利资源导航| 91美女精品| 成人丝袜18视频在线观看| 久久av少妇| 国产精品视频观看| 视频二区欧美| 色综合久久久久综合体 | 国产精品色婷婷久久58| 黄色小视频在线观看| 国产精品拍天天在线| 美女100%一区| 亚洲自拍偷拍综合| 先锋影音国产精品| 狠狠操在线视频| 国产91精品在线观看| 精品午夜av| 777亚洲妇女| 国产亚洲网站| 日本中文字幕中出在线| 欧美性高潮床叫视频| 91国内外精品自在线播放| 精品对白一区国产伦| 每日更新成人在线视频| 国产三级电影在线播放| 精品久久久久久久久久| 久久三级视频| 欧洲成人一区| 亚洲精品国精品久久99热一| 国产成人精品午夜视频免费| 亚洲免费福利| 独立日3在线观看完整版| 日韩激情一二三区| 亚洲欧洲二区| 日本电影全部在线观看网站视频| 亚洲精品久久久久久国产精华液| 三级黄色网址| 亚洲国产精品t66y| 先锋资源久久| 人人超在线公开视频| 91麻豆精品国产自产在线| 国产在线国偷精品免费看| 成人午夜网址| 国产理论电影在线观看| 91成人免费电影| 国产麻豆9l精品三级站| 加勒比色综合久久久久久久久 | 在线免费看黄| 欧美久久久久久久久中文字幕| 日韩精品欧美成人高清一区二区| 免费视频观看成人| 一级毛片在线观| 欧美在线小视频| 成人av电影在线| 日本女优一区| 成人香蕉视频| 中文在线播放| 欧美日韩视频专区在线播放| 懂色av一区二区三区免费观看| 免费欧美一区| 黄色污网站在线观看| 狠狠干夜夜操| 色综合天天综合给合国产| 成人国产亚洲欧美成人综合网| 欧美aaaa视频| 高清av一区二区三区| 人成免费电影一二三区在线观看| 精品美女久久久久久免费| 国产二区国产一区在线观看| 日韩久久精品网| 草民电影神马电影一区二区| 激情综合闲人网| 精品少妇一区二区三区在线视频| 久久理论电影网| 性8sex亚洲区入口| 欧美电影免费网站| 国产黄大片在线观看| 白白色视频在线| 正在播放一区二区| 亚洲国产精品一区二区www | 精品国产中文字幕第一页| 成人国产激情| 午夜在线小视频|